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First...

Figure: Bob and I in Lisbon (Third workshop on hyperspectral image and signal
processing: evolution in remote sensing –WHISPERS, 2011)
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Nonnegative Matrix Factorization (NMF)
Given a matrix M ∈ Rm×n+ and a factorization rank r ∈ N, find

U ∈ Rm×rand V ∈ Rr×n such that

min
U≥0,V≥0

||M − UV ||2F =
∑
i,j

(M − UV )2ij . (NMF)

NMF is a linear dimensionality reduction technique for nonnegative data :

M(:, i)︸ ︷︷ ︸
≥0

≈
r∑

k=1

U(:, k)︸ ︷︷ ︸
≥0

V (k, i)︸ ︷︷ ︸
≥0

for all i.

Why nonnegativity?

→ Interpretability: Nonnegativity constraints lead to a sparse and
part-based representation.
→ Many applications. Text mining, hyperspectral unmixing, image
processing, community detection, clustering, etc.
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Application 1: image processing

U ≥ 0 constraints the basis elements to be nonnegative.

Moreover V ≥ 0 imposes an additive reconstruction.

The basis elements extract facial features such as eyes, nose and lips.
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Application 2: text mining

� Basis elements allow to recover the different topics;

� Weights allow to assign each text to its corresponding topics.
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Application 3: hyperspectral unmixing

Figure: Hyperspectral image.
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Application 3: hyperspectral unmixing

� Basis elements allow to recover the different materials;

� Weights allow to know which pixel contains which material.
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Application 3: hyperspectral unmixing

Figure: Urban dataset.
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Using Underapproximations for NMF
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Issues of using NMF

1. NMF is NP-hard [V09].

2. The optimal solution is, in most cases, non-unique and the problem is
ill-posed [G12]. Many variants of NMF impose additional constraints
(e.g., sparsity on U , smoothness of V , etc.).

3. In practice, it is difficult to choose the factorization rank (in general,
trial and error approach or estimation using the SVD).

A possible way to overcome drawbacks 2. and 3. is to use
underapproximation constraints to solve NMF recursively.

[V09] Vavasis, On the Complexity of Nonnegative Matrix Factorization, SIAM J. on
Optimization, 2009.
[G12] G., Sparse and Unique Nonnegative Matrix Factorization Through Data Preprocessing, J.
of Machine Learning Research, 2012.
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Nonnegative Matrix Underapproximation (NMU)
It is possible to solve NMF recursively, solving at each step

min
u≥0,v≥0

||M − uvT ||2F such that uvT ≤M ⇐⇒ M − uvT ≥ 0.

NMU is yet another linear dimensionality reduction technique.
However,

� As PCA, it is computed recursively and is well-posed [GG10].

� As NMF, it leads to a separation by parts. Moreover the
additional underapproximation constraints enhance this property.

� In the presence of pure-pixels, the NMU recursion is able to
detect materials individually [GP11].

[GG10] G., Glineur, Using Underapproximations for Sparse Nonnegative Matrix Factorization,
Pattern Recognition, 2010.
[GP11] G., Plemmons, Dimensionality Reduction, Classification, and Spectral Mixture Analysis
using Nonnegative Underapproximation, Optical Engineering, 2011.
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Example of NMU on the Urban dataset

Figure: Hyperspectral image from aircraft - Army Geospatial Center -
307× 307× 162.
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Example of NMU on the Urban dataset
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Example of NMU on the Urban dataset
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Example on the San Diego Airport dataset
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Example on the San Diego Airport dataset
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Additional Sparsity Constraints

� With more blur and noise, NMU typically fails to detect materials
individually.

� However, it can still be a useful dimensionality reduction
technique (e.g., combined with nearest neighbor or k-means).

� In order to detect materials, it is possible to enhance sparsity of
the abundance matrix V to extract more localized features. We
solve [GP13]

min
u≥0,v≥0

||M − uvT ||2F + µ||v||1

uvT ≤M. (sparse NMU)

[GP13] G., Plemmons, Nonnegative Matrix Underapproximation and its Application for
Hyperspectral Image Analysis, Lin. Alg. Appl., 2013.
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San Diego Airport

Figure: First four basis elements of NMU

Figure: First four basis elements of sparse NMU
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Additional Spatial Constraints

It is also possible to take into account spatial constraints [GPZ12]:
neighbor pixels are more likely to contain the same materials.

Figure: NMU vs. spatial NMU on the Cuprite data set.

[GPZ12] G., Plemmons, Zhang, Priors in Sparse Recursive Decompositions of Hyperspectral
Images, Proc. of SPIE, 2012.
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Separable and Near-Separable NMF
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Can we only solve NMF problems?

Given a matrix M ∈ Rm×n+ and a factorization rank r ∈ N, find

U ∈ Rm×rand V ∈ Rr×n such that

min
U≥0,V≥0

||M − UV ||2F =
∑
i,j

(M − UV )2ij . (NMF)

� NMF is NP-hard [V09].

� In practice, it is often satisfactory to use locally optimal solutions for
further analysis of the data. In other words, heuristics often solve the
problem efficiently with acceptable answers.

� Try to analyze this state of affairs by considering enerative models
and algorithms that can recover hidden data.

[V09] Vavasis, On the Complexity of Nonnegative Matrix Factorization, SIAM J. on
Optimization, 2009.
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Separability Assumption

For NMF, it is possible to compute optimal solutions in polynomial time,
given that the input data matrix M satisfies a (rather strong) condition:
separability [AGKM12].

The nonnegative matrix M is r-separable if and only if

there exists an NMF (U, V ) ≥ 0 of rank r with M = UV where
each column of U is equal to a column of M .

[AGKM12] Arora, Ge, Kannan, Moitra, Computing a Nonnegative Matrix Factorization –
Provably, STOC 2012.
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Is separability a reasonable assumption?

� Text mining: for each topic, there is a ‘pure’ document on that topic,
or, for each topic, there is a ‘pure’ word used only by that topic.
[KSK13] Kumar, Sindhwani, Kambadur, Fast Conical Hull Algorithms for Near-separable
Non-Negative Matrix Factorization, ICML 2013.
[AG+13] Arora, Ge, Halpern, Mimno, Moitra, Sontag, Wu, Zhu, A Practical Algorithm for
Topic Modeling with Provable Guarantees, ICML 2013.
[DRIS13] Ding, Rohban, Ishwar, Saligrama, Topic Discovery through Data Dependent and
Random Projections, ICML 2013.

� Hyperspectral unmixing: separability is particularly natural: for
each constitutive material, there is a ‘pure’ pixel containing only that
material. This is the so called pure-pixel assumption which is widely
used in hyperspectral imaging.

� General image processing: No.
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Geometric Interpretation of Separable NMF

After normalization, the columns of M,U and V sum to one: the columns
of U are the vertices of the convex hull of the columns of M .

M is r-separable ⇐⇒ M = U [Ir, V
′]Π,

for some V ′ ≥ 0 and some permutation Π.
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Separable NMF with Noise

M̃ = U [Ir, V
′]Π +N, where N is the noise.

CUHK Recent Advances in NMF 25



Near-Separable NMF: Noise and Conditioning

We will assume that the noise is bounded (but otherwise arbitrary):

||N(:, i)||1 ≤ ε, for all i,

and some dependence on some condition number is unavoidable:
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Fast and Robust Algorithm for Separable NMF

M = UV = U [Ir, V
′] = [U,UV ′] Π,

where V ′ ≥ 0 and its column sum to one.

Observation 1. The maximum of a strongly convex function f over a
polytope is attained at a vertex:

max
1≤i≤n

f(M(:, i)) = max
1≤i≤r

f(U(:, i)).

Observation 2. This property is robust: for M̃ = M +N , if M̃(:, i) is the
column of M̃ maximizing f , then there exists p such that

||M̃(:, i)− U(:, p)||2 ≤ O
(
ε κ2(U)

)
.

Observation 3. Pre-multiplying M preserves separability:

PM = (PU) [Ir, V
′] Π.
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Successive Projection Algorithm (SPA)
0: R = M̃ .
For i = 1 : r
% Identify the column of R maximizing ||.||2.
1: j∗ = argmaxj ||R(:, j)||2 and U(:, i) = M̃(:, j∗).
% Project all columns of R onto its orthogonal complement.

2: R←
(
I − R(:,j∗)R(:,j∗)T

||R(:,j∗)||22

)
R.

end
It is essentially modified Gram-Schmidt with column pivoting.

Theorem ([GV12]). If ε ≤ O
(
σmin(U)√
rκ2(U)

)
, SPA leads to an NMF (U, V ) s.t.

||M̃ − UV ||2 ≤ O
(
εκ2(U)

)
.

Advantages. Extremely fast, no parameter.

Drawbacks. Requires U to be full rank; bound is weak.
[GV12] G., Vavasis, Fast and Robust Recursive Algorithms for Separable Nonnegative Matrix
Factorization, to appear in IEEE Trans. Patt. Anal. Mach. Intell.
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Pre-conditioning for More Robust SPA

Observation 3. Pre-multiplying M preserves separability:

P M̃ = P (U [Ir, V
′] +N) = (PU) [I, V ′] + PN.

Ideally, P = U−1 so that κ(PU) = 1.
Solving the minimum volume ellipsoid centered at the origin and
containing all the columns of M̃ (which is SDP representable)

min
A∈Sr+

log det(A)−1 s.t. m̃i
TAm̃i ≤ 1 ∀ i,

allows to approximate U−1: in fact, A∗ ≈ U−TU−1.

Theorem ([GV13]). If ε ≤ O
(
σmin(U)
r
√
r

)
, preconditioned SPA leads to an

NMF (U, V ) s.t. ||M̃ − UV ||2 ≤ O (εκ(U)).

[GV13] G., Vavasis, SDP-based Preconditioning for More Robust Near-Separable NMF,
arXiv:1310.2273.
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Observation 3. Pre-multiplying M preserves separability:

P M̃ = P (U [Ir, V
′] +N) = (PU) [I, V ′] + PN.

Ideally, P = U−1 so that κ(PU) = 1.
Solving the minimum volume ellipsoid centered at the origin and
containing all the columns of M̃ (which is SDP representable)

min
A∈Sr+

log det(A)−1 s.t. m̃i
TAm̃i ≤ 1 ∀ i,

allows to approximate U−1: in fact, A∗ ≈ U−TU−1.

Theorem ([GV13]). If ε ≤ O
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√
r

)
, preconditioned SPA leads to an

NMF (U, V ) s.t. ||M̃ − UV ||2 ≤ O (εκ(U)).
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arXiv:1310.2273.

CUHK Recent Advances in NMF 29



Synthetic data sets
� Each entry of U ∈ R20×20

+ uniform in [0, 1]; each column normalized.
� The other columns of M are the middle points of the columns of U

(hence there are
(
20
2

)
= 190).

� The noise moves the middle points toward the outside of the convex
hull of the column of U .

Figure: Example for r = 3.
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Results for the synthetic data sets

Figure: Average of the percentage of columns correctly extracted depending on
the noise level (for each noise level, 10 matrices are generated).
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Hubble telescope hyperspectral image

Figure: Sample of images for the Hubble telescope hyperspectral image with
100 spectral bands and 128× 128 pixels.
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Hubble telescope hyperspectral image

Figure: Spectral signatures extracted by SPA, corresponding to constitutive
materials (matrix U with κ(U) = 115).
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Hubble telescope hyperspectral image

Figure: Reconstructed abundance maps (matrix H).
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Hubble telescope with blur and noise

Figure: Sample of images for the Hubble telescope.
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Hubble telescope with blur and noise

Figure: Spectral signatures extracted by SPA, corresponding to constitutive
materials (matrix U).
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Hubble telescope with blur and noise

Figure: Reconstructed abundance maps (matrix V ). With the blur and noise,
SPA fails to identify good columns.
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Hubble telescope with blur and noise

Figure: Spectral signatures extracted by preconditioned SPA, corresponding
to constitutive materials (matrix U).
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Hubble telescope with blur and noise

Figure: Reconstructed abundance maps (matrix V ). With the blur and noise,
preconditioned SPA is able to identify the right columns.
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Conclusion

1. Nonnegative matrix factorization (NMF)

I Easily interpretable linear dimensionality reduction technique for
nonnegative data, with many applications

2. Nonnegative matrix underapproximation (NMU)

I Underapproximations allow to solve NMF recursively
I additional sparsity and regularity constraints leads to better

separation by parts

3. Separable NMF

I Separability makes NMF problems efficiently solvable
I Need for fast, practical and robust algorithms
I SPA, a recursive algorithm for separable NMF
I SDP preconditionning can be used to make SPA significantly

more robust to noise
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Thank you for your attention

and Thanks to Bob!

Code and papers available on
https://sites.google.com/site/nicolasgillis/.
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